
ARMv4T Partial Instruction Set Summary
Operation Syntax Page Num. S updates Action and Comments
Move Move mov{cond}{s} Rd, shift_op A4–56 (156) N Z C Rd := shift_op

 with NOT mvn{cond}{s} Rd, shift_op A4–68 (168) N Z C Rd := NOT(shift_op)
 CPSR to register mrs{cond} Rd, cpsr A4–60 (160) Rd := CPSR
 SPSR to register mrs{cond} Rd, spsr A4–60 (160) Rd := SPSR; Not valid in System or User modes
 register to CPSR msr{cond} cpsr_fields, Rm A4–62 (162) CPSR := Rd (selected bytes only)
 register to SPSR msr{cond} spsr_fields, Rm A4–62 (162) SPSR := Rd (selected bytes only); Not valid in System or User modes
 immediate to CPSR msr{cond} cpsr_fields, #imm8r A4–62 (162) CPSR := imm8r (selected bytes only)
 immediate to SPSR msr{cond} spsr_fields, #imm8r A4–62 (162) SPSR := imm8r (selected bytes only); Not valid in System or User modes

Arithmetic Add add{cond}{s} Rd, Rn, shift_op A4–6 (106) N Z C V Rd := Rn + shift_op
 with carry adc{cond}{s} Rd, Rn, shift_op A4–4 (104) N Z C V Rd := Rn + shift_op + Carry
Subtract sub{cond}{s} Rd, Rn, shift_op A4–98 (198) N Z C V Rd := Rn – shift_op
 with carry sbc{cond}{s} Rd, Rn, shift_op A4–76 (176) N Z C V Rd := Rn – shift_op – NOT(Carry)
 reverse subtract rsb{cond}{s} Rd, Rn, shift_op A4–72 (172) N Z C V Rd := shift_op – Rn
 reverse subtract with carry rsc{cond}{s} Rd, Rn, shift_op A4–74 (174) N Z C V Rd := shift_op – Rn – NOT(Carry)
Multiply mul{cond}{s} Rd, Rm, Rs A4–66 (166) N Z C? Rd := Rm × Rs (lower 32 bits only)
 with accumulate mla{cond}{s} Rd, Rm, Rs, Rn A4–54 (154) N Z C? Rd := (Rm × Rs) + Rn (lower 32 bits only)
 unsigned long umull{cond}{s} RdLo, RdHi, Rm, Rs A4–111 (211) N Z C? V? RdHi,RdLo := unsigned(Rm × Rs)
 unsigned long with accumulate umlal{cond}{s} RdLo, RdHi, Rm, Rs A4–109 (209) N Z C? V? RdHi,RdLo := unsigned(RdHi,RdLo + Rm × Rs)
 signed long smull{cond}{s} RdLo, RdHi, Rm, Rs A4–80 (180) N Z C? V? RdHi,RdLo := signed(Rm × Rs)
 signed long with accumulate smlal{cond}{s} RdLo, RdHi, Rm, Rs A4–78 (178) N Z C? V? RdHi,RdLo := signed(RdHi,RdLo + Rm × Rs)

Logical AND and{cond}{s} Rd, Rn, shift_op A4–8 (108) N Z C Rd := Rn AND shift_op
OR orr{cond}{s} Rd, Rn, shift_op A4–70 (170) N Z C Rd := Rn OR shift_op
XOR eor{cond}{s} Rd, Rn, shift_op A4–26 (126) N Z C Rd := Rn XOR shift_op
Bit clear bic{cond}{s} Rd, Rn, shift_op A4–12 (112) N Z C Rd := Rn AND NOT(shift_op)
Rotates and shifts Usually mov{cond}{s} Rd, shift_op A4–56 (156) N Z C Usually Rd := shift_op; May use other instructions (eg, add, sub)

Compare Compare cmp{cond} Rn, shift_op A4–25 (125) N Z C V Update CPSR flags for Rn – shift_op
 negated cmn{cond} Rn, shift_op A4–23 (123) N Z C V Update CPSR flags for Rn + shift_op
Bitwise test tst{cond} Rn, shift_op A4–107 (207) N Z C Update CPSR flags for Rn AND shift_op
Equivalence test teq{cond} Rn, shift_op A4–106 (206) N Z C Update CPSR flags for Rn XOR shift_op

Branch Branch b{cond} label A4–10 (110) R15 := address of label; Jump to label
 with link bl{cond} label A4–10 (110) R14 := R15 – 4; R15 := address of label; Call subroutine/function at label
 and exchange bx{cond} Rm A4–19 (119) R15 := Rm; Changes to Thumb mode if bit 0 of Rm is 1
Return from subroutine Usually mov pc, lr or bx lr A4–11 (111) R15 := R14

Load Load word ldr{cond} Rd, am2 A4–37 (137) Rd := word stored at address am2
 using User mode privileges ldr{cond}t Rd, am2P A4–50 (150) Rd := word stored at address am2P; Usually used in non-User modes
Load byte ldr{cond}b Rd, am2 A4–40 (140) Rd := ZeroExtend(byte at address am2)
 signed ldr{cond}sb Rd, am3 A4–46 (146) Rd := SignExtend(byte at address am3)
 using User mode privileges ldr{cond}bt Rd, am2P A4–42 (142) Rd := ZeroExtend(byte at address am2P); Usually used in non-User modes
Load half-word ldr{cond}h Rd, am3 A4–44 (144) Rd := ZeroExtend(half-word at address am3)
 signed ldr{cond}sh Rd, am3 A4–48 (148) Rd := SignExtend(half-word at address am3)

Store Store word str{cond} Rd, am2 A4–88 (188) Store word in Rd at address am2
 using User mode privileges str{cond}t Rd, am2P A4–96 (196) Store word in Rd at address am2P; Usually used in non-User modes
Store byte str{cond}b Rd, am2 A4–90 (190) Store byte in Rd[7..0] at address am2
 using User mode privileges str{cond}bt Rd, am2P A4–92 (192) Store byte in Rd[7..0] at address am2P; Usually used in non-User modes
Store half-word str{cond}h Rd, am3 A4–94 (194) Store half-word in Rd[15..0] at address am3

Load Multiple Pop, or Block data load ldm{cond}{am4L} Rd{!}, {reglist} A4–30 (130) Load all listed registers from address in Rd
 using User mode privileges ldm{cond}{am4L} Rd{!}, {reglist–pc}^ A4–32 (132) Load all listed registers (PC register not listed) from address in Rd; Not valid in User mode
 return and restore CPSR ldm{cond}{am4L} Rd{!}, {reglist+pc}^ A4–34 (134) Load registers, CPSR := SPSR, branch to PC; Not valid in User or System modes

Store Multiple Push, or Block data store stm{cond}{am4S} Rd{!}, {reglist} A4–84 (184) Store all listed registers to address in Rd
 using User mode privileges stm{cond}{am4S} Rd{!}, {reglist}^ A4–86 (186) Store all listed registers to address in Rd; Usually used in non-User modes

Miscellaneous Swap word swp{cond} Rd, Rm, [Rn] A4–102 (202) temp := word at address in Rn, store Rm to address in Rn, Rd := temp
Swap byte swp{cond}b Rd, Rm, [Rn] A4–104 (204) temp := ZeroExtend(byte at address in Rn), store Rm[7..0] to address in Rn, Rd := temp
Software interrupt swi{cond} imm24 A4–100 (200) Branch-and-link to address 0x00000008 in Supervisor mode

Pseudo-instructions No operation nop{cond} Does nothing; translates to mov{cond} r0, r0
Load variable ldr{cond} Rd, label Rd := word stored at address label; translates to ldr{cond} Rd, [r15, #offset]
Move constant ldr{cond} Rd, =imm32 mov Rd, #imm32 or ldr Rd, [r15, #offset]
Load address adr{cond} Rd, label add Rd, r15, #offset
 long version adr{cond}l Rd, label Two-instruction form of adr

ARMv4T Partial Instruction Set Tables
Register Names and Aliases

Reg Aliases Purpose in ARM Thumb Procedure Call Standard
r0 a1 Argument/result/scratch register 1
r1 a2 Argument/result/scratch register 2
r2 a3 Argument/result/scratch register 3
r3 a4 Argument/result/scratch register 4
r4 v1 Variable register 1
r5 v2 Variable register 2
r6 v3 Variable register 3
r7 v4 Variable register 4
r8 v5 Variable register 5
r9 v6 or sb Variable register 6; sometimes Stack Base register
r10 v7 or sl Variable register 7; sometimes Stack Limit register
r11 v8 or fp Variable register 8; usually Frame Pointer register
r12 ip Intra-procedure-call scratch register
r13 sp Stack Pointer
r14 lr Link Register
r15 pc Program Counter

Program Status Register Format
31 28 24 16 8 7 6 5 4 0

N Z C V Undef. Undef. Undef. I F T Mode

Program Status Register Modes
Value Mode Accessible registers

0b10000 User PC, R14–R0, CPSR
st Interrupt PC, R14_fiq–R8_fiq, R7–R0, CPSR, SPSR_fiq
errupt PC, R14_irq–R13_irq, R12–R0, CPSR, SPSR_irq
pervisor PC, R14_svc–R13_svc, R12–R0, CPSR, SPSR_svc
ort PC, R14_abt–R13_abt, R12–R0, CPSR, SPSR_abt
defined PC, R14_und–R13_und, R12–R0, CPSR, SPSR_und
stem PC, R14–R0, CPSR

ogram Status Register Fields: fields
n PSRs Description

–7 Control field mask
–15 Extension field mask (no bits currently defined)
–23 Status field mask (no bits currently defined)
–31 Flags field mask (bits 24–27 undefined)

Optional Condition Field: cond
escription Condition flags state

qual Z set
ot equal Z clear
arry set/unsigned higher or same C set
arry clear/unsigned lower C clear
inus/negative N set

lus/positive or zero N clear
verflow V set
o overflow V clear
nsigned higher C set and Z clear
nsigned lower or same C clear or Z set
igned greater than or equal N equal to V
igned less than N not equal to V
igned greater than Z clear and N equal to V
igned less than or equal Z set and N not equal to V
lways (unconditional, default) Irrelevant

Data Processing Mode: shifter_op
Operation Syntax Comments

Immediate value #imm8r
Register Rm
Logical shift left immediate Rm, lsl #imm5 Allowed 0–31 only
Logical shift left by register Rm, lsl Rs
Logical shift right immediate Rm, lsr #imm5 Allowed 1–32 only
Logical shift right by register Rm, lsr Rs
Arithmetic shift right immediate Rm, asr #imm5 Allowed 1–32 only
Arithmetic shift right by register Rm, asr Rs
Rotate right immediate Rm, ror #imm5 Allowed 1–31 only
Rotate right by register Rm, ror Rs
Rotate right with extend Rm, rrx

Load or Store Word/Unsigned Byte Mode: am2

Operation Syntax Cmts.

Pre-indexed Immediate offset [Rn, #±imm12]{!}
Zero offset [Rn] [Rn, #0]
Register offset [Rn, ±Rm]{!}
Scaled register offset [Rn, ±Rm, lsl #imm5]{!} 0–31 only

[Rn, ±Rm, lsr #imm5]{!} 1–32 only
[Rn, ±Rm, asr #imm5]{!} 1–32 only
[Rn, ±Rm, ror #imm5]{!} 1–31 only
[Rn, ±Rm, rrx]{!}

Post-indexed Immediate offset [Rn], #±imm12
Register offset [Rn], ±Rm
Scaled register offset [Rn], ±Rm, lsl #imm5 0–31 only

[Rn], ±Rm, lsr #imm5 1–32 only
[Rn], ±Rm, asr #imm5 1–32 only
[Rn], ±Rm, ror #imm5 1–31 only
[Rn], ±Rm, rrx

Load or Store with Translation Mode: am2P

Operation Syntax Cmts.

Post-indexed Immediate offset [Rn], #±imm12
Register offset [Rn], ±Rm
Scaled register offset [Rn], ±Rm, lsl #imm5 0–31 only

[Rn], ±Rm, lsr #imm5 1–32 only
[Rn], ±Rm, asr #imm5 1–32 only
[Rn], ±Rm, ror #imm5 1–31 only
[Rn], ±Rm, rrx

Load or Store Half-Word/Signed Byte Mode: am3

Operation Syntax Comments

Pre-indexed Immediate offset [Rn, #±imm8]{!} Note: not imm8r
Zero offset [Rn] Same as [Rn, #0]
Register offset [Rn, ±Rm]{!}

Post-indexed Immediate offset [Rn], #±imm8 Note: not imm8r

Register offset [Rn], ±Rm

Load Multiple Data Mode: am4L
Suffix Non-stack Addressing Mode Suffix Stack Addressing Mode
ia Increment after fd Full descending
ib Increment before ed Empty descending
da Decrement after fa Full ascending
db Decrement before ea Empty ascending

Store Multiple Data Mode: am4S
Suffix Non-stack Addressing Mode Suffix Stack Addressing Mode
ia Increment after ea Empty ascending
ib Increment before fa Full ascending
da Decrement after ed Empty descending
db Decrement before fd Full descending

Exception Vector Table
Address Mode Exception Type

0x00000000 Supervisor Reset
0x00000004 Undefined Undefined instruction
0x00000008 Supervisor Software interrupt
0x0000000C Abort Prefetch abort (instruction fetch abort)
0x00000010 Abort Data abort (data access memory abort)
0x00000014 (None) (Not used)
0x00000018 Interrupt Normal-priority interrupt
0x0000001C Fast Interrupt High-priority (fast) interrupt

Miscellaneous
Symbol Meaning
imm5 Immediate 5-bit number, either 0–31, 1–32 or 1–31
imm8 Immediate 8-bit number, between 0–255
imm8r A 32-bit number that can be formed by rotating an 8-bit

number (0–255) by an even number between 0 and 30
imm12 Immediate 12-bit number, between 0–4095
imm24 Immediate 24-bit number, between 0–16,777,215
imm32 Immediate 32-bit number, between 0–4,294,967,295
{s} If present, the instruction will update the condition flags
N Negative flag: 1 if result is negative
Z Zero flag: 1 if result is zero
C Carry flag
V Signed Overflow flag
C? Carry flag ends in an unpredictable state, if flags are set
V? Overflow flag ends in an unpredictable state, if flags are set
I Interrupt Disable bit in the PSRs: 1 to disable interrupts
F Fast Interrupt Disable bit: 1 to disable fast interrupts
T ARM or Thumb state: 0 for ARM execution, 1 for Thumb
{reglist} List of registers separated by commas or dashes, sur-

rounded by braces, eg, {r0,r1,r2} or {r0–r3,r5}
{reglist–pc} List of registers that does not include PC (R15)
{reglist+pc} List of registers that does include PC (R15)
{!} If present, the instruction updates the base register after

the memory transfer.
Post-indexed accesses always update the base register

± Either + or - may be supplied; + is assumed if not present

This document contains a summary of the ARMv4T instruction set architecture in tabular format. It does not list every instruction available in the
ARM architecture: the coprocessor instructions, in particular, have not been listed. Page numbers refer to both the printed and on-line versions of
the ARM Architecture Reference Manual, Second Edition, published by Addison-Wesley in December 2000 (ISBN 0-201-73719-1).

This document was created by John Zaitseff for the Digital Systems Laboratory at the University of New South Wales.
Copyright © 2003, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia. All rights reserved.
0b10001 Fa
0b10010 Int
0b10011 Su
0b10111 Ab
0b11011 Un
0b11111 Sy

Pr
Suffix Bits i
c 0
x 8
s 16
f 24

Mnemonic D
EQ E
NE N

CS or HS C
CC or LO C

MI M
PL P
VS O
VC N
HI U
LS U
GE S
LT S
GT S
LE S
AL A

	ARMv4T Partial Instruction Set Summary
	ARMv4T Partial Instruction Set Tables
	Register Names and Aliases
	Program Status Register Format
	Program Status Register Modes
	Program Status Register Fields: fields
	Optional Condition Field: cond
	Data Processing Mode: shifter_op
	Load or Store Word/Unsigned Byte Mode: am2
	Load or Store with Translation Mode: am2P
	Load or Store Half-Word/Signed Byte Mode: am3
	Load Multiple Data Mode: am4L
	Store Multiple Data Mode: am4S
	Exception Vector Table
	Miscellaneous

